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The reflection of pressure waves of finite amplitude 
from an open end of a duct 
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(Received 21 May 1957) 

SUMMARY 
When plane pressure waves in a duct reach an open end, they 

establish a complicated three-dimensional wave pattern in the 
vicinity of the exit which tends to readjust the exit pressure to its 
steady-flow level. This adjustment process is continually modi- 
fied by further incident waves, so that the effective instantaneous 
boundary conditions which determine the reflected wave depend 
on the flow history. In the analysis of a nonsteady-flow problem 
by means of a wave diagram, it has been customary to assume that 
the steady-flow boundary conditions are instantaneously establi- 
shed. While this simplifying assumption appears reasonable, the 
resulting errors have been undetermined. It is the purpose of 
the present investigation to obtain improved boundary conditions. 
The results of a previous study of the reflection of shock waves 
from an open end have now been extended to other waves of 
finite amplitude. The reflected waves computed by means of the 
new procedure are in good agreement with experimental data 
observed in a shock tube for a variety of flow conditions. The 
pressure variations in a reflected wave lag behind those derived 
in the conventional manner by the time in which a sound wave 
travels about one or two duct diameters. Such lags are small, 
but may occasionally become significant. As a consequence of 
the lag, certain discontinuities of the incident wave do not reappear 
in the reflected wave. This improved understanding of the 
reflection process has made it possible to clarify some previously 
unexplained experimental observations. 

1. INTRODUCTION 
The reflection of pressure waves of finite amplitude from an open end 

of a duct must frequently be determined when quasi-one-dimensional 
nonsteady flows are being analysed by the method of characteristics. Such 
reflections are customarily computed under the assumption that the 
boundary conditions in nonsteady flow are the same as in steady flow 
(e.g. Shapiro 1954, p. 960 ; Rudinger 1955 a, p. 59). This assumption 
leads to convenient computing procedures, but represents only an approxi- 
mation to the actual phenomena. The incident waves change the 
steady-flow exit pressure which, through the mechanism of a complicated 
three-dimensional wave pattern, can then reestablish itself only gradually at 
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a rate that depends on the time for waves to travel across the end section of 
the duct. Since this adjustment process is continually modified by the 
incident waves, the instantaneous boundary conditions depend on the 
history of the flow. Application of the steady-flow boundary conditions 
implies that the adjustment is instantaneous, so that the deviations of the 
exit pressure from its steady-flow level are neglected. The present investi- 
gation was undertaken to obtain improved boundary conditions which may 
be used instead of the conventional procedure or, at least, may permit an 
evaluation of the lag in the establishment of the steady-flow boundary 
conditions. Since wave-diagram procedures are based on the model of a 
one-dimensional flow, it is only necessary to find ‘effective’ boundary 
conditions. Details of the highly complicated three-dimensional flow 
phenomena in the immediate vicinity of the end section of the duct are not 
needed. 

The work started with an analysis of the reflection of shock waves from 
an open end (Rudinger 1955 b), based on acoustic theory, and the results 
were in good agreement with experimental observations in spite of the 
finite amplitude of the waves considered. Therefore, it seemed promising 
to extend the analysis to arbitrary incident waves. The ‘ effective ’ pressure 
variations that occur in the end section of the duct during the adjustment 
process following the arrival of an incident shock wave may be considered 
as the ‘ response to a step function ’, from which the response to an arbitrary 
wave can be computed by means of Duhamel’s integral. It is implied in 
this analysis that the steady-flow boundary conditions are represented by 
a constant pressure at the duct exit equal to that of the surrounding gas, but 
this boundary condition applies only to  subsonic outflow from the duct. 
(The restriction to subsonic flow must be made because no reflected wave 
can propagate into the duct if the outflow velocity is sonic or supersonic.) 
If the direction of the velocity is reversed, and the gas flows from the 
surrounding gas into the duct, the pressure at the end is not constant, but 
becomes a function of the flow velocity, even in steady flow. The formation 
of a vena contracta, caused by flow separation at the inlet edge of the duct, 
further complicates the situation. The computing procedure derived 
from the results of the acoustic theory with the aid of Duhamel’s integral 
strictly applies, therefore, only to outflow ; but certain empirical modi- 
fications make it possible to deal also with inflow. 

An experimental check on the results is obtained by measuring the 
pressure variations of the incident and reflected waves at some distance 
from the end of the duct where the flow can be considered as one-dimen- 
sional. From the data for the incident wave alone, the reflected wave can 
be computed on the basis of the new and the conventional procedures, and 
the results compared with the experimental observations. 

2. DERIVATION OF THE COMPUTING PROCEDURE FOR SUBSONIC OUTFLOW 

In the previous study of the reflection of a shock wave from an open 
end (Rudinger 1955b), the incident wave was expressed in terms of its 
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frequency spectrum by the Fourier integral of a step function. The 
Fourier integral of the reflected wave was then obtained from the known 
frequency dependence of the acoustic impedance of an open end. Numerical 
evaluation of this integral yielded the effective variations of the exit pressure, 
and the results were in good agreement with experimental observations. 
For weak shock waves, there are noticeable differences between the observed 
reflected wave and that computed by means of the conventional procedure. 
These differences become insignificant for stronger shock waves (i.e. with 
pressure ratios larger than about two in air). This is a fortunate finding, 
because the use of acoustic theory implies isentropic changes of state and 
appIies, therefore, only to weak shock waves. 

The deviations of the instantaneous pressure at the end of the duct 
pe(7) from the steady-flow value p ,  were expressed in terms of a dimension- 
less time 

where t is time measured from the instant of arrival of the shock wave at 
the exit, and a, is the initial speed of sound; the duct diameter D is the 

7 = U o t / D ,  (1) 

@-)= 0.858 

0 1 2 3 4 
TIME z = a . t / D  

Figure 1. Plot of the functions I(.) and @(T). 

significant dimension that controls the rate at which the steady-flow bound- 
ary conditions are approached (see $ 3  for further remarks on this). The 
result was obtained in the form 

where p i - p ,  is the pressure rise across the incident shock wave, and the 
time dependence 1(r) is shown in figure 1 (see also table I). Equation (2) 
represents the instantaneous boundary conditions which can be applied 
in a wave diagram. 

One may consider the function I(,) as the indicia1 admittance of the 
system, that is, the response of the exit pressure to an incident wave in the 
form of a unit-pressure step. The response to an arbitrary incident wave, 

Pe(T) -PO = ( P ~ - P O ) ~ T ) ,  (2) 
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described at the exit by p ( ~ )  -po = F(T), can then be derived by means of 
Duhamel's integral which may be expressed in the form (see, for instance, 
Khrmhn & Biot 1940, p. 403) 

where T~ is the instant at which the incident wave begins to arrive at the 
end of the duct, and 6 denotes the integration variable. The wave diagram 
is started from an initial state of rest or steady flow ; thus, the condition 
F(T) = 0 for T < T~ eliminates the first term on the right side of equation (3). 

I 
POSITION 

Figure 2. Wave reflections from an open end. I and I1 indicate the location oE 
pressure transducers. 

For T > T ~ ,  the function F(T) cannot, in general, be prescribed in. 
advance, but becomes available only as the construction of the wave diagram 
proceeds. Figure 2 shows a sketch of the wave diagram which includes 
several characteristics of the incident wave (Po, PI, P2...) and their 
reflections from the open end (go, Ql, Q2...), which propagate with the 
velocities u,+a, and un-an respectively (n = 0, 1, Z...). The Riemann 
variables P, and Qa, defined by 

P n  = 2an/(y - 1) + un, 
Qn = 2an/(y - 1) -un, 

(4 a) 
(4 b) 

where y has its usual meaning, remain constant along their respective 
characteristics if the flow is isentropic and the duct has a constant cross 

D 2  
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section. (These assumptions do not restrict the present analysis, which is 
required to find only the wave that reaches the duct exit regardless of the 
manner in which the wave is generated. See $ 3 ,  where nonisentropic 
flow into the duct is considered.) 

Regions between any two consecutive characteristics of the incident 
wave may be considered as small wave elements for which the derivative 
in the integrand of equation (3) can be replaced by the finite-difference 
ratio AFlAT. The flow conditions remain constant along a characteristic 
of the incident wave only until the latter interacts with the reflected wave. 
In  the interaction region, the strength of a wave element must be measured 
along a crossing characteristic (see Rudinger 1955a, pp. 31 & 32). The 
strength remains constant if expressed as a change of the speed of sound, 
but not if expressed as a change of pressure. Instead of calculating the 
pressure changes in the incident wave as modified by the reflected wave, 
it is therefore preferable to derive the boundary conditions directly in 
terms of the speed of sound, so that F(T) must describe the incident wave 
in terms of this variable. The strength of an element of the incident wave 
Aa, follows, from the property of characteristics (equations (4) with 
Q = const.), as 

This definition, apparently, neglects the last piece of the characteristics 
before they reach the exit. 

and the change of a between points 2 , l  and 2 is not considered. Actually, 
the incident wave element should be taken as a$--, ,  where the prime 
indicates the flow conditions that would be established if the duct did not 
terminate at this location after the arrival of the characteristic PI. There 
would then be no reflected wave between 1 and 2, so that Qi = Q1 = Q2,1, 
and, therefore a; = u ~ , ~ .  This reasoning justifies the foregoing definition 
of Aa,. 

Interaction of the incident and reflected waves also modifies the times 
at which the characteristics of the former arrive at the open end. The 
actual arrival times, and therefore the values of AT,, can be taken directly 
from the wave diagram (see figure 2). 

To derive a computing procedure in terms of the speed of sound rather 
than pressure requires that the indicia1 admittance be expressed in terms 
of this variable. Equation (2) defines I(T) as a pressure ratio which is not 
exactly equal to the corresponding ratio of the sound speeds. Since the 
changes of state may be considered as isentropic, equation (2) may be 
rewritten in the form 

Aan = t(r  - 1)(Pn - Pn-1). 

Aa2 = a2,o- a,,, = a2,1- a,, 

(5) 

In figure 2, for example, 

which defines a correction factor t,h that is always less then unity, because 
ai <ae(7) <ao. Immediately after the arrival of the shock wave, when 
a, = ai, one obtains i,b =l. The minimum value of $ is reached when 
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a, approaches a, ; but this error is insignificant because I(T) then approaches 
zero. It seems reasonable, therefore, that any significant error would 
appear near the middle of the range where a, = +(ai+ a,). For this value, 
a series expansion of $ yields 

For increments of a, - a, not larger than about 0.02a0, the value of $ is then 
greater than 0.9 for any y larger than 1.1.  Such errors of the indicia1 
admittance curve (see figure 1) could not be detected experimentally. 
Throughout the following, the relation 

- a, I(T) = ai - a, 
will therefore be used. 

~ 

0 1 .ooo 
0.1 0.938 
0.2 0.870 
0.3 0.798 
0.4 0.721 
0.5 0.642 
0.6 0.570 
0.8 0.431 
1.0 0.318 
1.2 0.231 
1.4 0.169 

0 
0.097 
0.187 
0.271 
0.346 
0.414 
0.475 
0.574 
0.648 
0.705 
0.745 

1.6 0.126 0.774 
1.8 0.094 0.795 
2.0 0.070 0.811 
2.2 0.052 0.823 
2.4 0.039 0.832 
2.6 0.029 0.839 
2.8 0.021 0.844 
3.0 0.014 0.847 
3 .5 0-008 0.853 
4.0 0.004 0.856 
co 0 0.858 

Table 1. The functions I(T) and @(T). 

The boundary conditions at an open end can now be derived from 
equation (3) where, in view of the foregoing discussion, all pressures are 
replaced by the corresponding values of the speed of sound, and the 
derivative in the integrand is approximated by a step-wise constant function. 
The integral then breaks down into a series of terms each of which represents 
the contribution at the nth point from all preceding elements of the incident 
wave. One obtains 

where the function @(T)  is defined by 

The function I(.) is known from the previous investigation, and the new 
function @(T)  was derived from it by numerical integration. Values for 
both functions are listed in table 1. These numbers are uncertain within 
a few units in the last decimal place, but this accuracy is entirely adequate 
for wave diagram applications. A plot of @(T) is also included in figure 1, 
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Equation (9) represents the instantaneous boundary conditions. TO 
illustrate the nature of the adjustment process at the duct exit, consider 
an incident compression wave F(T) defined by 

. .  

d F ( 4  - (a, - u,)/(T, - 7,) = const. for T ,  < T < T,, d7 

J = o  for T < T,  and T > 7,. 

It is not necessary, in this case, to divide the wave into small elements, since 
the values of A u ~ / A T ~  would be the same for every element. Alternatively, 
one may consider the wave as one element of strength Au = al - a, that is 

" t  

-Figure 3. Variation of the flow conditions at the end section of the duct for an 
incident wave consisting of a single element. 

arriving at the exit during the interval AT = ~ ~ - 7 , .  

conditions then follow from (9), and are given by 
The boundary 

1 a = a, for T < T,, 

a, - a0 a = a,+ -@(T-T,) 
71 - 7 0  i for T,  < T < T ~ ,  

for T > T ~ .  

'These conditions are shown as the heavy line in figure 3. 
increase to a maximum given by 

The values 

and then decay asymptotically. If T~ is large, the second term on the 
right side becomes small and amax tends to a,. This is exactly what one 
would expect, for, if the incident wave changes the flow conditions only 
slowly, the boundary conditions do not deviate significantly from their 
steady-flow values. If on the other hand, one considers the limit as T ,  - T ,  

tends to zero (incident shock wave), one obtains with the aid of equation (10) 

l i m @ ( ~ ) / ~ - + 1 ( 0 )  = 1, (14) 
7 4  

and, therefore, amax = a,. 
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The procedure indicated by equation (9), applied to an incident wave 
for which d8'1d-r is not constant, represents a superposition of the contri- 
butions from all wave elements that have reached the exit since the beginning 
of the wave. The difference of the @-functions in each term of the sum 
rapidly approaches zero when the smaller argument exceeds about three 
(see figure 2). I n  practice, one finds that only the most recent three or 
four wave elements contribute significant amounts to the sum. The incre- 
ments after the end of the incident wave are all zero, but the calculations 
must be continued until all the contributions of the earlier elements have 
also decayed to zero. 

This computing procedure is more complicated than the conventional 
one which is based on the simple boundary condition a, = a,, but the 
additional time required is not prohibitive. From a, and P,, one obtains 
u, and Q, by means of equations (4), so that the flow conditions and the 
reflected characteristic at the exit are completely determined. 

3. MODIFICATION OF THE PROCEDURE FOR INFLOW 

As discussed in Q 1, the procedure derived in Q 2 applies only to outflow 
from the duct, and some modifications are necessary before it can be applied 
to inflow. These modifications are of an empirical nature, and although 
they seem to be plausible, the results must be checked experimentally 
for a variety of flow conditions. 

First, it is necessary to correct for the variation of the steady-flow 
boundary conditions with the velocity of inflow. The sum on the right side 
of equation (8) represents the deviation of the instantaneous from the 
steady-flow boundary conditions. For inflow, the steady-flow boundary 
conditions are not represented by the constant value a,, but by an,m. The 
latter is related to the steady-flow velocity un,m by the energy equation 
(see Rudinger 1955 a, pp. 63-65) 

where a,, the speed of sound in the gas surrounding the duct, assumes the 
role of the stagnation condition. Since the Riemann variable P, of the 
incident characteristic is known, equations (4 a) and (15) completely deter- 
mine the flow that would be established if there were no lag in the adjustment 
to the steady-flow boundary conditions (as in the conventional procedure). 
Replacing a, by a,,, in equation (9) ensures, therefore, that the correct 
boundary conditions are obtained when a sufficiently long time has elapsed 
after the end of the incident wave. 

The strength of every wave element ha, must also be modified to 
account for the change that the element causes in the steady-flow boundary 
conditions. For an incident expansion wave (to produce inflow) consisting 
of a single element specified by Aa and AT, the largest deviation from the 
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steady-flow boundary condition occurs at the minimum value of a. 
latter is given by the relation, analogous to equation (13), 

The 

(16). 
A%!€ 

amin = U ,  + - @(AT), AT 
where AaeE represents the effective, modified strength of the wave element. 
This relation yields the correct value amin = a ,  for large AT. It must 
also lead to amin = a ,+Aa  (Aa < 0 for an expansion wave) in the 
limit as AT approaches zero. Because of equation (14), one obtains 
then AaeE = Aa-(a,-a,), which shows that the strength of a wave 
element must be decreased by the associated change of the steady-flow 
boundary conditions. For a wave that is formed by a number of 
elements, the effective strength of any one must, therefore, be given by 
Aaj - ( u ~ , ~  - u ~ - ~ , ~ ) .  The assumption implied in this analysis is that the 
functions I(T) and @(T), which were derived for the adjustment process 
during outflow, can also be applied for inflow in spite of the different flow 
patterns in the two cases. With these modifications, equation (9) becomes 

which includes the outflow conditions as a special case, since it transforms 
into equation (9) for u , , ~  = a,. 

So far only insentropic inflow has been considered, which is permissible 
only if the flow does not separate at the inlet edge of the duct. The losses 
associated with flow separation result in an entropy increase that must be 
taken into account. The characteristics of the incident wave must then 
pass through a region of variable entropy before they reach the end of the 
duct, and the values of P are no longer constant, but vary according to 
(e.g. Rudinger 1955 a, pp. 18, and 39 & 40) 

6,P 6 , s  - -  - a -  
87 6T ’ 

where S+/Sr indicates the derivative in the characteristic direction u + a, 
and S is a dimensionless entropy ( = entropy/(y - 1) x specific heat at 
constant pressure) measured from the reference value So = 0. Therefore 
it is necessary to find how the values of Aa, are affected by the variations 
of P. The effect of entropy gradients can be derived with the aid of figure 4, 
which shows the incident characteristics at the exit points n-  1 and n 
and the path of the gas ‘particle’ that separates the regions of zero and 
variable entropies ; the ‘ particle ’ path entering the duct at the point n - 1 
is also indicated. Let P,-l,o and P,,, represent the Riemann variables of 
the two incident characteristics before they enter the region of variable 
entropy. 

The boundary conditions depend only upon waves that actually reach the 
end of the duct and, as stated before, the value of ha, should therefore 
express the change of the flow conditions that would be produced at the 

In this region, the strength of the wave element is given by 

Aa,,o = %z,o - %-l,O = B(r - W n . 0  - Pn-LO)* (19) 
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location of the exit if the duct did not terminate there after arrival of the 
preceding wave element. Under these conditions, there would be no 
entropy change between k and n (see figure 4), so that 

Equations (4) yield 

and, together with (20), lead to 

PA = Pk, and Qk = QnP1. (20) 

4 = HY - 1)(pA + QA), and aIt-1 = $(Y - I)(Pn-i + Qn-J, 

Aan = a; - an-l = t ( y  - l)(Pk - PnPl). (21) 
Equation (18) can be integrated since a on the right side can be considered 

as a constant. This is always permissible in the cases considered here, 
because changes of a are small and aS is a sufficiently small quantity, so that 

\ 
\ (  
\ 

l/YE 

I 
OPEN 
END 

Figure 4. Reflection of a wave element that first traverses a region of variable entropy. 
The dashed lines indicate the path of gas ' particles ' along which the entropy 
remains constant. 

the errors resulting from the foregoing simplification are negligible, 
integration yields for the nth characteristic 

If this equation, applied to points k and n- 1, is substituted into (21) and 
combined with ( 5 )  and (19), one obtains 

where use has also been made of the condition Sk = S,-l (i.e. k and n- 1 
lie on the same ' particle ' path). The intermediate wave-diagram point 1 
is determined by Pt from equation (22), and Ql from the analogous relation 
Ql = Qn-l + an-,(SJ - Sn-l), where Sl must be found by interpolation. 

The 

Pn = Pn,o + an,o(Sn - S R , o ) .  

4 = Aan,oP + 4(Y - Wn-& 

(22) 

(23) 



58 George Rudinger 

Equation (23) provides the desired correction for the strength of a 
wave element owing to its passage through the region of variable entropy, 
but the correction factor deviates from unity only by an insignificant amount. 
For sonic flow velocity into a sharp-edged duct inlet (Borda mouthpiece), 
the error would be less than 3 %  for y = 5/3. In  all actual cases, 
it would be even smaller, because the inflow velocity must be less than sonic 
for a characteristic to be able to reach the end of the duct. It can therefore 
be concluded that the strength of the incident wave elements may be 
determined from equation (19). 

The values of an,m in equation (17) can be obtained in the conventional 
manner from equations (4a) and (15), but P, must first be computed 
from Pi or Pn,o by means of equation (22). This step requires the yet 
unknown value of S,. Some suitable assumptions must be made to deter- 
mine this quantity. The inflowing gas forms a stationary vortex inside 
the duct, followed by a mixing region, after which the flow again fills the 
entire cross section (figure 5). In  steady flow into a given inlet configuration, 
the entropy rise is a function of the flow velocity (or its speed of sound, 
since these two variables are related through equation (15)); in nonsteady 
flow, the changes of entropy lag behind those of velocity, because the 
former are a consequence of a mixing process which requires a certain time. 

! 
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CONTRACTA 

'. 
MIXING REGION 

\ STATIONARY VORTEX 

Figure 5. Flow into a duct with separation at the inlet edge. 

The following simple assumptions have led to satisfactory agreement 
of the results with experimental observations. The vortex and subsequent 
mixing region are concentrated in the inlet section of the duct, and the 
entropy is given by 

s, = S ? p .  (24) 
T o  illustrate the last assumption, consider an incident expansion wave 

consisting of a single element. The speed of sound at the inlet drops 
from its initial value a, to some minimum, a,, after which it gradually rises 
to The entropy, at the same time, rises from zero to S,, which, 
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because of the lag, does not reach the level that would correspond to a, 
in steady flow; ultimately, the entropy becomes According to 
equation (24), the assumption is now made that S, = 

These calculations require the steady-flow relation between entropy 
rise and flow velocity. Such a relation is readily computed for a sharp-edged 
inlet (Rudinger 1955 a, pp. 71-73), for which it takes the form 

In general, the entropy rise depends on the configuration of the duct, and 
must be given in any particular case by a relation or plot equivalent to 
equation (25). Since a , ,  in this relation must be determined from P,, 
which in turn depends on S,,,, a certain amount of iteration may be 
required for this part of the calculations. 

A further consequence of flow separation at the inlet is the formation 
*of a vena contracta (see figure 5 ) .  The diameter of the stream tube that 
enters the duct, and in which the flow conditions must adjust themselves 
to the varying boundary conditions, is therefore smaller than the duct 
diameter. Accordingly, the significant length that is used in equation ( 1 )  
to make the time variable nondimensional is assumed to be the diameter of 
the vena contracta D, rather than the duct diameter D. The ratio of the 
cross-sectional area of the vena contracta to the duct area can be computed 
for a sharp-edged inlet as a function of the flow velocity (see, for instance, 
Busemann 1931, p. 377), and varies between 0.5 for low velocities (incom- 
pressible flow) and about 0-64 for sonic inflow. Accordingly, D,/D varies 
between about 0.7 and 0.8. Variations of D,/D for other inlet configuations 
might be determined by the method of Jobson (1955), but a constant 
.average value D,/D = 0.75 was found to be satisfactory not only for a 
sharp-edged inlet, but also for a flanged inlet with a rounded edge (see Q 4). 

The inflow procedures may now be summarized as follows for point n 
of the wave diagram. 

( 1 )  Make an estimate for S,  = S,,,, and compute P, from equation (22). 
The required value of a,,0 or a, is already known from preceding wave 
.diagram calculations. 

(2) Determine an,m from equations (4a) and (15 ) .  
( 3 )  Find Sn,m from an,m and the prescribed steady-flow relation between 

entropy and the speed of sound (equation (25) for a sharp-edged inlet or 
its equivalent for other configurations). If Sn3, does not agree with the 
original estimate, repeat steps ( 1 )  to ( 3 )  with a new value until agreement is 
reached. These three steps also represent the conventional procedures 
which are based on S, = Sn,m and a, = an,a. 

(4) Determine Aa, from equation (19). 
( 5 )  Compute a, from equation (17), where the value T = aot/0.75D is 

used. (This time variable must be used in equation (17), but it is not 
necessary to use D, as the reference length for the entire wave diagram.) 
'The required data for points j < n are already known from preceding work. 



60 George Rudinger 

(6) Compute u, and Qn from P, and a, with the aid of equations (4)- 
With this step, the flow conditions at point n are completely determined, 
and the reflected characteristic can be plotted by means of the standard 
techniques. 

4. EXPERIMENTAL CHECK OF THE PROCEDURES 

Experimental techniques 
A shock tube constructed of a cold-drawn brass tube of 3.23 in. internal 

diameter was used for the experimental work. The length of the pressurized 
chamber was fixed at 12ft., while the open duct was made up of several 
sections so that its length could be varied between 3 and 15.5 ft. Depending 
on the desired pressures, one or two sheets of photographic film or cello- 
phane were used as diaphragms. 

Two flush-mounted, condenser transducers (Rutishauser model HR3 
with electronic indicator type ST-12) were available for pressure measure- 
ments. These had a range of 50 lb./in.2 and an adequate frequency response 
(the resonance frequency was of the order of 30000c/s). The pressure 
signals were displayed on a dual-beam oscilloscope (Dumont model 322A) 
and photographed on a drum camera (Southern Instruments model M-1020) 
at a film speed of 50 ft./sec. A second oscilloscope provided 0.1 millisecond 
timing marks that were recorded simultaneously with the pressure by means 
of an optical beam splitter arrangement. After each run, a calibration 
signal was recorded on the same film to check the sensitivity of the instru- 
mentation. The calibration of the pressure recording system was linear 
over the range of the experiments. Two switches, built into the camera, 
served to blank the oscilloscope beams, except for one revolution of the 
drum, and to break the shock tube diaphragm at the right instant by means of 
a solenoid-operated needle. 

The wave phenomena in the tube are indicated in figure 2. Comparison 
between theory and experiment is to be made at a point located 1 ft. from 
the open end (I). The incident wave reaches the transducer at A, and the 
reflected wave starts to arrive at B. After this time, the pressure record 
indicates the superposition of the two waves. A simple technique to 
determine the pressure distribution of the incident wave alone is to add an 
extension section to the shock tube which delays the arrival of the reflected 
wave sufficiently to record the incident wave over the range of interest in 
a separate experiment. The flow conditions associated with the incident 
wave are completely determined by the pressure record, since a follows 
from the condition of isentropic changes of state (wall friction effects are 
assumed to be small enough to be neglected) 

and u follows from the property of the characteristics that Q = Qo- 
Equation (4 b) yields, therefore, 

u = 2(a-a0) / (y -1) .  (27) 
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This method can only be used if the experiments are reproducible. 
Otherwise, the incident wave may be found with the aid of a second pressure 
transducer mounted 2 ft. from the open end. At this location (11), the 
incident wave can be recorded directly in the range between A' and C' 
'(see figure 2) which is adequate for the present purpose. 

In the regions A to B, and A' to B', both transducers record the incident 
wave alone. Equations (26) and (27) then serve as a check on their relative 
calibrations, since any pressure at location I1 appears at location I after 
a delay 

where L is the distance between the pressure transducers. Equation (28) 
.applies only to a simple wave for which the characteristics are straight 
lines. This property may also be utilized to detect condensation of water 
vapour in the region between the transducers, since one would no longer 
have a simple wave (see $5).  

Once the incident wave is determined by means of one of the two methods 
described, its reflection from the open end may be computed on the basis 
of the conventional and the new procedures. The interaction of these 
waves with the incident wave is then determined at location I, and the 
results are compared with the pressure record at this location. 

(28) t ,  - t,, = L/(u +a) ,  

Reflection of a compression wave 
The compression wave was produced by placing a loosely fitting light 

piston into the shock tube a few inches downstream of the diaphragm; 
when the latter broke, the air pressure accelerated the piston thereby 
producing the compression wave. Proper selection of the weight of the 
piston, the pressure of the driving air, and the length of the duct, ensured 
that the compression wave had sufficient strength without steepening to 
a shock wave inside the duct, and that the wave reflected from the open end 
passed the points of pressure measurement before the piston arrived there. 
The piston was constructed of two Q in. discs of masonite separated by 
five wooden spacing rods of 35in. length; its weight was about 4 lb. 
The initial pressure difference across the shock tube diaphragm was 
50 lb./in.2, and the open end of the tube was 15.5 ft. from the diaphragm. 
A new piston had to be used for every run, and instead of relying on the 
reproducibility of the experiments, the incident wave was determined by 
means of the described technique based on two pressure transducers. 
The results obtained in this manner are presented in figure 6. Although 
the incident wave has just steepened sufficiently to form a weak leading 
shock wave, most of the pressure rise in the incident wave takes place 
gradually. The presence of a shock front requires that the term 
Aashock1(7-~,,) (from (8)) be added to the boundary conditions given 
by (9). The experimental results for the reflected wave are in good 
agreement with the data based on the new procedure, while the conventional 
technique indicates too rapid a pressure drop. 
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Refection of an expansion wave 
The shock-tube chamber was evacuated instead of pressurized in these 

experiments, and to obtain sufficiently steep expansion waves, the distance 
from the diaphragm to the open end was made rather short; it was 3.25 
or 4.25 ft. depending on whether one or two pressure transducers were 
used. Initial pressure differences across the diaphragm were varied between 
- 2 and - 13 lb./in.2 

1.15 

PRESSURE 
RATIO 
?/% 

1.10 

1.05 

EXIT PRESSURE 

1.00 

TIME r = a,t/D 

Figure 6. Reflection of a compression wave. Comparison of theory and experiment 
The time is measured 

Experimental data : 
Computed 

a new boundary conditions, 0 steady-flow boundary conditions. The 

A sufficiently weak incident wave passes the pressure transducer 
completely before the reflected wave arrives so that both waves can be 
measured directly in one experiment with a single transducer. For stronger 
waves, the two waves interact at the location of the transducer and the 
incident wave must be found by other means. Since the pressure records 
were reproducible, it was possible to use the method of the tube extension 
described in the foregoing, although the alternative method based on two, 
pressure transducers was: also employed. 

All experiments, with one exception, were carried out with a sharp-edged 
inlet (Borda mouthpiece) because the entropy rise is then readily determined. 
The results for this configuration and for initial diaphragm pressure 
differences of -2, -5, and - 13 lb./in.2 are shown in figure 7 as curves a, 

at 1 ft. from the open end of a duct of 3.23 in. diameter. 
from the arrival of the incident wave at 2 ft. from the end. 
A incident wave; o interaction of incident and reflected waves. 
data : 
computed ' effective ' exit pressure ratio is also plotted. 
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b and c respectively. It is seen that the customarily used steady-flow 
boundary conditions predict a pressure rise in the reflected wave that is 
faster than the one actually observed, while the new procedure leads to 
good agreement with the experimental data for the two weaker waves. 
For the strongest wave c, the agreement is still good at the beginning of 
the reflected wave, but the computed values gradually rise faster than the 
experimental ones (see $ 5 ) .  

TIME f = a o t / D  
0 2 4 6 8 10 12 14 16 

1 .o 

0.9 

0.8 
PRESSURE 

RATIO 
?/Po 

0.7 

I 
0.64 

Figure 7. Reflection of expansion waves. Comparison of theory and experiment 
at 1 ft. from the open end of a duct of 3.23 in. diameter; a, b, c sharp-edged 
inlet for initial diaphragm pressures of -2, - 5, and -13 lb./in.2 respectively; 
d flanged inlet with rounded edge; initial diaphragm pressure - 5 lb./in.2 (See 
figure 6 for explanation of the symbols.) 

One experiment was carried out with an inlet configuration consisting 
of a flanged duct with a rounded inlet edge, and an initial diaphragm pressure 
difference of - 5 lb./in.a. From the measured steady-flow pressures after 
the incident and reflected waves, respectively, the entropy rise for the final 
steady-flow velocity could be computed and was found to be 61 % of that of a 
sharp-edged inlet for the same flow velocity. The entropy rise at the other 
flow velocities was then assumed to be given by the same fraction of the 
corresponding value for a sharp-edged inlet. The results for this experiment, 
plotted as curve d in figure 7, show the same good agreement between the 
computed values based on the new boundary conditions and the experimental 
data. (The incident waves for cases b and dare different in spite of the same 
initial pressure conditions, because the diaphragm materials were not the 
same in these experiments ; photographic film was used for b and cellophane 
for d. These variations do not affect the results, since the evaluation of the 
experiments is always based on the individual incident wave.) 

5. DISCUSSION AND CONCLUSIONS 

The previously derived boundary conditions for the reflection of shock 
waves from an open end have been extended to other waves. As long as  
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subsonic outflow from the duct is maintained no further assumptions are 
required. Since the analysis for shock waves led to good agreement with 
experimental observations, one should expect similar agreement for other 
waves for which the disturbance at the duct exit is less violent. This is 
indeed observed, as indicated by figure 6. As additional interesting 
information, the variations of the effective exit pressure were obtained 
from the wave diagram that had to be prepared for the evaluation of the 
experiment, and these are also plotted in figure 6. It is seen that this pressure, 
after an appreciable disturbance, tends to readjust itself to the steady-flow 
value p,, but levels off slightly above p ,  where it remains almost constant 
as long as the incident wave ' tries' to raise the pressure. 

The computing procedures had to be modified to make them applicable 
to inflow. Because of the empirical nature of the modifications, it was 
important to verify their consequences for a variety of flow conditions. 
The described modifications are the ones found to be most satisfactory, 
and the good agreements between calculated and experimental data to 
which they lead is demonstrated in figure 7 .  A disagreement was found 
only for the strongest waves (c ) ,  and then only for the later portion of the 
reflected wave when the observed pressures rise higher than those computed 
on the basis of the steady-flow boundary conditions. Since the difference 
between the two theoretical curves is caused by the lag in the establishment 
of the steady-flow boundary conditions, one must conclude that the dis- 
crepancy cannot be caused by an error in the evaluation of this lag. Any 
uncertainty about the incident wave that might have been caused by the 
effects of condensation of water vapour in the duct was also ruled out by the 
described technique of using two pressure transducers. The recorded 
pressures were found to be related to each other exactly in the manner 
required by equations (26) to (28) for a simple wave, which indicated the 
absence of condensation effects. This finding seems to leave wall friction 
effects as the only cause for the observed discrepancy between theory and 
experiment. In this case, the flow in the vena contracta has already become 
sonic, and the Mach number of the flow exceeds 0-5 further inside the duct. 
A crude analysis of the friction effects by a linearization method, similar 
to that of Trimpi & Cohen (1955), indicates that a friction coefficient several 
times that of its steady-flow value could indeed explain the discrepancy. 
This result appears reasonable in view of the uncertainty of the friction 
coefficient for nonsteady flow in the vicinity of a sharp-edged inlet. 

It is apparent from figures 6 and 7 that the actual flow conditions lag 
behind those computed in the conventional manner by about the time in 
which a sound wave travels one or two duct diameters. The corresponding 
lag time for shock reflection is (see figure 1) the travel time for about three 
duct diameters. 

An interesting consequence of the lag is the elimination of certain 
discontinuities of the incident wave from the reflected wave. Figures 6 
and 7, for instance, show clearly that the derivative 8pla-r has a discontinuity 
at the head of the incident wave which reappears at the head of the reflected 
wave only when the conventional boundary conditions are used, while the 
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f ini te ampli tude f r o m  an open end of a duct, Plate I. 

Figure 8. Schlieren streak record of the reflection of an expansion wave from an open end of a 
(Courtesy of Dr  I. I. Glass, 3 J 3 in. shock tube. 

University of Toronto.) 
Note the apparent absence of a reflected wave. 
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new boundary conditions, in agreement with the experimental data, indicate 
a gradual change of the slope of the curves. A general proof for this 
observation can be obtained by differentiating equation (3) with respect 
to r which yields 

where I(0) = 1. The integral in this relation is a continuous function of r 

if F(r)  is continuous, so that any discontinuities of dp,/dr are fully accounted 
for by those of the derivative of the incident wave alone. Consequently, 
no discontinuities appear in the reflected wave. The significance of this 
conclusion becomes evident if one considers that a schlieren photograph 
of a gas flow does not record gas densities but density gradients. The 
discontinuity of the gradient at the head of an expansion wave in a shock 
tube is therefore readily photographed, while the head of the wave reflected 
from an open end, having no such discontinuity, would appear on the record 
only faintly, if at all. This phenomenon was actually observed at the 
University of Toronto (Glass & Patterson 1955), where schlieren streak 
records of this reflection process were obtained. The relevant portion 
of such a record is reproduced in figure 8 (plate l), and the originally 
puzzling observation of an apparently missing reflected wave is now quite 
understandable. 

In  conclusion, it may be stated that new boundary conditions for wave 
reflection from an open end have been derived which lead to a better agree- 
ment with experimental observations than the customarily used steady-flow 
boundary conditions. The new procedures take into account that the 
steady-flow boundary conditions are not instantaneously established, and 
that the adjustment process is continually modified by the incident waves. 
The actual flow conditions lag behind those computed in the conventional 
manner and, although the lag times are small, they may occasionally become 
significant. The new computing procedures are more complicated than 
the conventional ones, but the additional time required for their application 
is not prohibitive. On the other hand, one must also consider that the 
resulting refinement may not be warranted because of other errors introduced 
into a wave diagram by some simplifying assumptions, such as the neglect 
of wall friction at high flow velocities. It has also been shown that certain 
discontinuities of the incident wave are eliminated from the reflected wave. 
This improved understanding of the reflection phenomena made it possible 
to explain certain, previously puzzling, experimental observations. 
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